游戏欧几里得,欧几里得几何
网上有很多关于游戏欧几里得,欧几里得几何的知识,也有很多人为大家解答关于手游 欧几里得几何的问题,今天白鹿网为大家整理了关于这方面的知识,让我们一起来看下吧!
手游 欧几里得几何
尽管我们对古希腊数学家欧几里得了解不多,但我们知道他生活在希腊统治下埃及的亚历山大城,他因写了极具开创性的《几何原本》而闻名于世。欧几里德的平面几何五大公理是什么?欧几里得的《几何原本》无疑是有史以来最重要的数学著作之一,一直到19世纪这本书都被认为是所有学者的基础读物。欧几里得和他的《几何原本》都有什么?高昇教育老师为你整理了初中数学学习技巧:欧几里得和他的《几何原本》。
初等证明
虽然欧几里得吸收了他人的想法,但他是第一个利用数理逻辑去证明理论的数学家。这种证明的思想是数学的基础之一。
《几何原本》涵盖大量几何方面的内容,还有一些对数的思考,其中包括质数及其他数列,同时,欧几里得书中的所有几何图形都是通过尺规来构建的。
这一著作被分为十三卷,每一卷的起始部分都是一些定义。有了这些定义,当欧几里得提及点、线、垂直、平面等词语时,读者都能够有个清晰的概念。然后,欧几里得会陈述一系列显然为真的的公理与命题,例如,“所有的直角都是相等的”和“如果A=B,A=C,那么B=C”。
《几何原本》的下一部分称作“命题”,在这里欧几里得会提出一种解决某个数学问题的方法。例如,在卷一的第一个命题里,欧几里得介绍如何画出一个等边三角形(所有的边相等,所有的角都等于),之后他继续去证明为什么那是一个等边三角形。
欧几里德的平面几何五大公理是什么?
欧几里德的《几何原本》,一开始欧几里德就劈头盖脸地给出了23个定义,5个公设,5个公理.其实他说的公社就是我们后来所说的公理,他的公理是一些计算和证明用到的方法(如公理1:等于同一个量的量相等,公理5:整体大于局部等)他给出的5个公设倒是和几何学非常紧密的,也就是后来我们教科书中的公理.分别是:
公设1:任意一点到另外任意一点可以画直线
公设2:一条有限线段可以继续延长
公设3:以任意点为心及任意的距离可以画圆
公设4:凡直角都彼此相等
公设5:同平面内一条直线和另外两条直线相交,若在某一侧的两个内角和小于二直角的和,则这二直线经无限延长后在这一侧相交.
在这五个公设理里,欧几里德并没有幼稚地假定定义的存在和彼此相容.亚里士多德就指出,头三个公设说的是可以构造线和圆,所以他是对两件东西顿在性的声明.事实上欧几里德用这种构造法证明很多命题.第五个公设非常罗嗦,没有前四个简洁好懂.声明的也不是存在的东西,而是欧几里德自己想的东西.这就足以说明他的天才.从欧几里德提出这个公理到1800年这大约2100年的时间里虽然人们没有怀疑整个体系的正确性,但是对这个第五公设却一直耿耿于怀.很多数学家想把这个公设从这个体系中去掉,但是几经努力而无果,无法从其他公设中推到处第五公设.
同时数学家们也注意到了这个公设既是对平行概念的论述(故称之为平行公理)也是对三角形内角和的论述(即内角和公理).高斯对这一点是非常明白的,他认为欧几里德几何式物质空间的几何,1799年他说给他的朋友的一封信中表现了他相信平行公里不能从其他的公设中推导出来,他开始认真从事开发一个新的能够应用的几何.1813年,发展了他几何,最初称为反欧氏几何,后称星空几何,最后称非欧几何.在他的几何中三角形内角可以大于180度.当然得到这样的几何不是高斯一人,历史上有三个人.一个是他的搭档,另一个是高斯的朋友的儿子独立发现的.其中一个有趣的问题是,非欧氏几何中过直线外一点的平行线可以无穷.
不久之后,俄国的一位著名数学家也发现了一个新的非欧几何,即罗氏几何.他的三角形内角和是小于180度的.
而19世纪初非欧式几何的发现,正是后来爱因斯坦发现广义相对论的基础.
欧几里得的几何学属于什么思维
欧几里得的几何学属于公理化思维。
欧几里dé几何简称“欧氏几何”,是几何学的一门分科。数学上,欧几里得jǐ何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具yǒu相似性质的高维几何。
ōu氏几何源于公元前3世纪。古希腊数学家欧几里德把人们公认的一些几何知识作wèi定义和公理,在此基础上研究图形的性质,推导出一系列定理,组成演绎体xì,写出《几何原本》,形成了欧氏几何。按所讨论的图形在píng面上或空jiān中,又分别称为平面几何与立体几何。
在证明jǐ何命题时,每一个命tí总是从再前一个命题推导出来的,而前一个命题又是从再前一个命题推导出来的。我们不能这样无限地推导下去,应有一些命题作为起点。这些作wèi论证起点,具有自明性并被公rèn下来的命题称为公理,如“两点确定一条zhí线”即是一例。
同样对于概念来讲也有些不加定义的原始概niàn,如点、线děng。在一个shù学理论系统中,我们尽可能少地先取原始概niàn和不加证明的若干公理,以此为出发点,利用纯逻辑推理的方法,把该系统建立成一个演绎系统,这样的方法就是公理化方法。
欧几里德采用de正是这种方法。tā先摆出公理、公设、定义,然hòu有条不紊地由简单到复zá地证明一系列命题。他以公理、gōng设、定义为要素,作为已知,先证明了第一个mìng题。然后又以此为基础,来证明第二个命题,如此下去,证míng了大量的命题。
欧几里何是什么意思?
欧几里得几何 简称“欧氏jǐ何”。几何学的一门分科。公元前3世纪,古希腊数学家ōu几里得把人们公认的一xiē几何知识作为定义和公理,在此基础上研究图xíng的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。
在其公理体系中,最zhòng要的是平xíng公理,yóu于对这一gōng理的不同认识,导致非欧几何的产生。
按所讨论的图形在平面上或空间中,分别称为“平面几何”与“立体几何”。
以上就是关于游戏欧几里得,欧几里得几何的知识,后面我们会继续为大家整理关于手游 欧几里得几何的知识,希望能够帮助到大家!
版权声明
本文内容由seo小编辑收集和互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 wnw678@qq.com 举报,一经查实,本站将立刻删除。